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ABSTRACT:	 Designing	 learning	 experiences	 that	 support	 the	 development	 of	 coherent	
understanding	of	 complex	 scientific	 phenomena	 is	 challenging.	We	 sought	 to	 identify	 analytics	
that	can	also	guide	such	designs	to	support	retention	of	coherent	understanding.	Based	on	prior	
research	that	distributing	study	of	material	over	time	supports	retention,	we	explored	revisiting	
previously	 studied	 material	 as	 an	 analytic.	 We	 tested	 ways	 to	 operationalize	 revisiting:	 as	 a	
general	 propensity	 to	 revisit	 previously	 studied	 material;	 as	 a	 propensity	 to	 revisit	 specific	
curricular	 steps;	 as	 a	 general	 propensity	 to	 distribute	 study	 by	 revisiting	 previously	 studied	
material	on	different	days;	and	as	a	propensity	to	distribute	study	by	revisiting	specific	steps	on	
different	 days.	 The	 specific	 steps	 identified	 as	 central	 to	 the	 learning	 design	 included	 a	 static	
illustration	 and	 a	 dynamic	 visualization.	 We	 modelled	 revisiting	 in	 a	 sample	 of	 664	 students	
taught	by	seven	different	teachers	using	a	Web-based	Inquiry	Science	Environment	unit.	Analysis	
of	log	files	and	regression	modelling	revealed	that	a	general	propensity	to	revisit	did	not	predict	
retention.	 Revisiting	 the	dynamic	 visualization	better	 supported	 retention	 than	 revisiting	 static	
material,	but	only	 for	distributed	 revisiting.	Our	 findings	 suggest	 that	 revisiting	can	be	a	useful	
analytic	when	aligned	with	the	framework	guiding	learning	design.	
	
Keywords:	 Learning	 design,	 revisiting,	 distributed	 practice,	 knowledge	 integration,	 inquiry	
science	
	

Editor’s	Note:	As	part	of	the	Special	Section	on	Learning	Analytics	&	Learning	Theory	this	article	 is	followed	by	a	
short	commentary	on	pp.	102-106	that	discusses	the	challenges	it	faced	and	successes	 it	achieved	in	drawing	on	
and	contributing	to	theory	use	in	learning	analytics.	

	

1 RATIONALE 
	
Lockyer,	Heathcote,	and	Dawson	 (2013)	suggest	a	symbiotic	 relationship	between	 learning	design	and	
learning	 analytics,	with	 the	 former	providing	 a	 lens	 to	 understand	pedagogical	 aims	 and	 the	 latter	 as	
evidence	that	can	be	used	to	evaluate	the	design;	this	approach	is	compelling	because	data	are	collected	
passively	 and	 in-situ.	 The	 learning	 design	 necessarily	 informs	 the	 pedagogical	 aims,	 as	 without	 this,	
deciphering	the	relevance	of	particular	data	signals	is	challenging.	As	a	result,	much	of	learning	analytics	
has	focused	on	student	progress	and	time	spent	on	a	task.	
	



	

(2015).	 Revisiting	 for	 retention:	 An	 analytic	 for	 inquiry	 science	 learning.	 Journal	 of	 Learning	 Analytics,	 2(2),	 75–101.	
http://dx.doi.org/10.18608/jla.2015.22.7	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	

76	

There	 is	 evidence	 that	 spending	 more	 time	 on	 task	 can	 support	 learning	 and	 retention	 (Barbera	 &	
Reimann,	2013;	Cotton,	1990).	Using	amount	of	time	as	a	metric	for	learning	is	appealing	because	it	 is	
relatively	 easy	 to	 measure.	 However,	 what	 students	 do	 during	 time	 spent	 studying	 also	 matters.	 To	
develop	a	more	nuanced	metric,	we	consider	 findings	 from	studies	of	distributed	practice,	one	of	 the	
most	well-documented	findings	from	laboratory	studies	of	recall;	numerous	studies	show	that	restudy	
of	 material,	 distributed	 in	 time,	 supports	 learning	 (Cepeda,	 Pashler,	 Vul,	 Wixted,	 &	 Rohrer,	 2006;	
Delaney,	Verkoeijen,	&	Spirgel,	2010;	Donovan	&	Radosevich,	1999;	Janiszewski,	Noel,	&	Sawyer,	2003).	
In	 this	 study,	 we	 explore	 the	metric	 of	 revisiting	—	 how	 and	what	 students	 spontaneously	 revisit	 in	
inquiry	science	materials	—	and	how	it	relates	to	their	retention.	We	specifically	explore	ways	revisiting	
can	 be	 a	 useful	 analytic	 for	 guiding	 the	 design	 of	 technology-enhanced	 learning	 experiences	 when	
retention	of	coherent	understanding	of	complex	scientific	phenomena	is	the	learning	goal.	This	responds	
to	calls	for	learning	analytics	to	guide	learning	design	(Ferguson,	2012).	
	
2 LITERATURE REVIEW 
	
We	begin	by	discussing	the	Knowledge	Integration	framework	that	guided	our	learning	design	(Figure	1).	
We	review	literature	on	distributed	practice	to	explain	why	we	sought	revisiting	as	a	relevant	metric	for	
retention.	We	then	discuss	research	on	static	and	dynamic	visualizations	for	learning	inquiry	science,	as	
we	compare	these	as	targets	for	students’	spontaneous	revisiting	in	web-based	learning	environments.	
	

	
Figure	1.	Model	for	retention	of	coherent	understanding	of	complex	phenomena,	informed	by	the	

Knowledge	Integration	framework	and	research	on	distributed	practice.	The	left-hand	figure	
represents	a	single	activity	within	a	unit.	In	the	right-hand	figure,	the	arrows	indicate	that	students	

can	directly	revisit	different	steps	within	an	activity.	
	

2.1 Knowledge Integration Framework Guiding Learning Design 
	
We	 use	 the	 term	 learning	 design	 (Laurillard,	 2012;	 Lockyer	 et	 al.,	 2013)	 to	 describe	 the	 pedagogical	
approach	—	Knowledge	Integration	—	instantiated	in	a	Web-based	Inquiry	Science	Environment	(WISE)	
(Slotta	&	Linn,	2009)	unit.	Learning	designs	aim	to	be	reusable	or	adaptable	across	contexts,	and	WISE	
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units	accomplish	this	by	providing	professional	development	for	teachers	and	providing	tools	that	allow	
teachers	to	adapt	units	for	their	classrooms;	this	adaptation	commonly	continues	into	the	classroom	as	
teachers	 implement	 units	 differently,	with	 some	 teachers	weaving	other	 resources,	 quizzes,	 labs,	 and	
activities	 into	 the	 unit,	 and	 others	 taking	 a	 guiding	 role,	 offering	 additional	 instruction	 only	 when	
students	seek	help.	WISE	units	provide	guidance	to	 teachers	and	students	about	what	 they	should	do	
and	when	to	do	it,	and	the	resources	required	to	carry	out	the	activities,	which	are	primarily	simulation-
based.	
	
The	 Knowledge	 Integration	 framework	 (Kali,	 2006;	 Linn	&	 Eylon,	 2011)	 draws	on	 extensive	 classroom	
research	to	identify	ways	to	guide	students	to	integrate	their	diverse	and	often	conflicting	ideas	about	
core	themes,	such	as	energy	transfer	and	transformation	across	science	disciplines	(Svihla	et	al.,	2010).	
We	refer	 to	 the	process	by	which	students	develop	a	coherent	understanding	of	science	that	 involves	
generating	ideas,	adding	new	ideas,	comparing	and	distinguishing	their	new	and	prior	ideas,	and	linking	
relevant,	normative	ideas	together,	as	knowledge	integration	(Kali,	Linn,	&	Roseman,	2008).	
WISE	units	 scaffold	 students	 using	 an	 inquiry	map	 (Figure	 2)	 to	 support	 them	 in	 developing	 coherent	
understanding	of	science	ideas	(Linn,	2006).	Each	unit	comprises	activities	of	multiple	steps	(listed	along	
the	 left	 side).	 Activities	 first	 elicit	 students’	 ideas.	 Next,	 activities	 introduce	 students	 to	 new	 ideas	
(commonly	described	in	the	Knowledge	Integration	framework	as	“adding	ideas”).	Finally,	activities	help	
students	distinguish	and	evaluate	between	their	initial	ideas	and	newly	added	ideas.	In	many	activities,	
this	 is	 accomplished	 through	 sequences	 in	 which	 students	 make	 predictions,	 interact	 with	 dynamic	
visualizations,	then	reflect	on	their	observations.	For	instance,	in	the	unit	called	Global	Climate	Change	
(GCC)	(Svihla	&	Linn,	2012a),	students	learn	about	the	greenhouse	effect	and	the	role	of	energy	transfer	
and	 energy	 transformation	 in	 climate	 change.	 They	 investigate	 NetLogo	 visualizations	 (Wilensky	 &	
Reisman,	2006)	representing	the	earth	and	atmosphere,	and	variables	involved	in	climate	change.		
	

	
Figure	2.	Inquiry	map	for	the	WISE	4	environment.	Activities	five	through	seven	are	visible;	activity	

seven	is	expanded	to	show	it	comprises	seven	steps.	
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Using	the	 inquiry	map,	students	can	revisit	prior	steps	throughout	the	unit;	 this	 is	part	of	the	 learning	
design,	 as	 one	 goal	 of	 the	 knowledge	 integration	 framework	 is	 to	 promote	 the	 ability	 of	 students	 to	
monitor	their	own	learning	by	knowing	when	they	need	more	information	(Chiu,	2010).	More	generally,	
recognizing	the	value	of	revisiting	is	consistent	with	recognizing	the	need	to	stop	and	explain	a	text	to	
oneself,	a	process	called	“generating	self-explanations”	 (Chi,	Bassok,	 Lewis,	Reimann,	&	Glaser,	1989).	
Some	 research	 suggests	 that	 students	 are	 able	 to	 judge	 when	 it	 is	 advantageous	 to	 distribute	 their	
learning	 over	 time	 (Popham,	 2009).	 However,	 studies	 of	 self-explanation	 show	 that	 some	 students	
spontaneously	seek	to	explain	conundrums	while	others	do	not	(Slotta	&	Chi,	2006)	and	that	individuals	
differ	in	their	propensity	to	update	their	memories	(Bjork,	1978).	For	this	reason,	some	authors	of	WISE	
units	 structure	 revisiting,	 such	 as	 by	 forcing	 students	 to	 revisit	 earlier	 steps	 based	 on	 non-normative	
responses.	However,	understanding	students’	spontaneous	revisiting	patterns	and	their	relationship	to	
retention	 of	 coherent	 understanding	 could	 help	 guide	 learning	 designs	 beyond	 simple	 checks.	 For	
instance,	prior	research	has	demonstrated	that	distributing	study	over	time	better	supports	retention;	
thus,	understanding	how	students	 revisit	 steps	over	 time	could	guide	new	design	patterns	 that	better	
support	retention.		
	
2.2 Revisiting as Distributed Practice to Support Retention 
	
2.2.1	 Revisiting	as	Distributed	Practice	Supports	Learning	
Students	might	revisit	a	step	to	help	clarify	their	ideas,	making	revisiting	a	form	of	distinguishing	ideas,	
as	 advocated	 in	 the	 knowledge	 integration	 framework	 (Svihla	 &	 Linn,	 2012b;	 Zhang	 &	 Linn,	 2011).	
However,	 revisiting	 could	 also	 be	 unproductive,	 as	when	 students	 reread	 text,	 adding	multi-coloured	
underlining	but	not	gaining	more	insight	into	the	material	(Bjork	&	Bjork,	2009).	There	are	many	reasons	
why	a	student	might	decide	to	revisit	a	step;	yet,	any	revisiting	provides	an	opportunity	to	restudy.	Thus,	
a	general	propensity	to	revisit	previously	studied	material	could	confer	an	advantage	for	retention.	
	
Students	 develop	 more	 durable,	 integrated	 understanding	 when	 they	 distribute	 their	 study	 in	 time,	
rather	than	when	they	mass	their	practice.	For	instance,	consider	two	students	studying	for	a	chemistry	
test.	Diego	reviews	the	material	for	10	minutes	each	day,	for	seven	days.	Mario	reviews	the	material	for	
70	 minutes	 the	 day	 before	 the	 test.	 Hundreds	 of	 studies	 (e.g.,	 as	 reviewed	 in	 Cepeda	 et	 al.,	 2006;	
Delaney	et	al.,	2010;	Donovan	&	Radosevich,	1999;	Janiszewski	et	al.,	2003)	would	predict	Diego	will	do	
better	on	the	exam	because	he	distributed	his	study	over	 time.	These	 findings	held	 for	 repetition	and	
induction	 tasks	 (Kornell,	 Castel,	 Eich,	 &	 Bjork,	 2010)	 and	 abstraction	 and	 generalization	 tasks	 (West,	
2011).	Classroom	studies	and	studies	with	educationally	relevant	materials	have	recently	become	more	
common,	 finding	 benefits	 to	 distributed	 study	 of	 scientific	 prose	 (Roediger	 &	 Karpicke,	 2006),	 maps	
(Carpenter	&	Pashler,	 2007),	history	 facts	 (Carpenter,	 Pashler,	&	Cepeda,	2009),	 vocabulary	 (Bloom	&	
Shuell,	1981;	Seabrook,	Brown,	&	Solity,	2005;	Sobel,	Cepeda,	&	Kapler,	2010),	multiplication	facts	(Rea	
&	Modigliani,	1985),	 statistics	concepts	 (Budé,	 Imbos,	Wiel,	&	Berger,	2011;	Smith	&	Rothkopf,	1984),	
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middle	 school	 biology	 concepts	 (Reynolds	 &	 Glaser,	 1964),	 university	 medical	 education	 (Kerfoot,	
Kearney,	Connelly,	&	Ritchey,	2009),	and	elementary	science	(Vlach	&	Sandhofer,	2012).	
	
However,	many	 of	 these	 studies	 occurred	 over	 a	 relatively	 short	 period,	 raising	 the	 need	 for	 further	
research	under	 real-world	and	 longer	 timeframe	conditions	 (Cepeda	et	al.,	2006;	Dunlosky	&	Rawson,	
2012).	Partially	taking	up	these	concerns,	recent	research	has	documented	the	utility	and	generality	of	
learning	 analytics	 approaches	 to	 distributed	practice,	 finding,	 for	 instance,	 that	 learning	management	
systems	 can	 provide	 usable	 information	 about	 distributed	 practice	 (Andergassen,	 Mödritscher,	 &	
Neumann,	 2014;	Mödritscher,	 Andergassen,	&	Neumann,	 2013).	 These	 studies	 show	 that	 distributing	
study	across	time	and	over	days	supports	learning	for	a	range	of	topics,	particularly	when	students	are	
able	 to	 integrate	 ideas	 across	 a	 course	 of	 study	 (Andergassen	 et	 al.,	 2014).	 However,	 questions	 still	
remain	 about	 how	 to	 support	 students	 to	 revisit	 previously	 studied	 content	 effectively	 to	 lead	 to	
retention	 of	 integrated	 understanding,	 which	 may	 depend	 on	 more	 than	 simple	 revisiting	 to	 recall	
previously	studied	material	(Dunlosky	&	Rawson,	2012).	
	
2.3 Retention of Integrated Understanding 
	
Researchers	have	varied	the	length	of	time	between	the	final	study	session	and	the	delayed	post-test	—	
called	 the	 retention	 interval	 (Carpenter,	 Cepeda,	 Rohrer,	 Kang,	 &	 Pashler,	 2012).	 Several	 studies	 of	
retention	 have	 produced	 reversal	 effects	 from	 immediate	 post-test	 to	 delayed	 post-test	 (Bird,	 2010;	
Rawson,	2012;	Rawson	&	Kintsch,	2005).	 In	 these	studies,	distributed	study	sessions	do	not	appear	 to	
benefit	performance	on	the	 immediate	post-test,	but	they	do	on	delayed	post-tests.	For	 instance,	 in	a	
study	involving	calculating	the	number	of	permutations	for	sequences,	students	first	learned	how	to	do	
a	problem,	and	then	either	completed	ten	practice	problems	in	one	clustered	session	or	in	two	sessions	
one	week	apart.	Post-test	results	showed	no	difference,	but	the	delayed	post-test	given	four	weeks	later	
showed	greater	retention	for	those	in	the	distributed	group	(Rohrer	&	Taylor,	2006).	
	
Likewise,	in	a	study	of	expository	texts	contrasting	a	massed	condition	with	a	distributed	condition	with	
a	one-week	gap	between	activities,	an	advantage	was	found	after	a	longer	retention	interval.	Students	
were	 tested	 for	 reading	 comprehension	 either	 immediately	 upon	 completion	 or	 after	 a	 two-day	
retention	 interval	 (Rawson	&	Kintsch,	 2005).	 Those	 in	 the	massed	 condition	performed	better	 on	 the	
immediate	 test,	 but	 those	 in	 the	 distributed	 condition	 performed	 better	 after	 a	 two-day	 retention	
interval.	 To	 explain	 why	 this	 might	 occur,	 researchers	 explored	 whether	 the	 long	 or	 short	 retention	
interval	would	 lead	 to	more	 integrated	 ideas	 (Rawson,	2012).	Rawson	 tested	 this	 idea	by	 focusing	on	
specific	 post-test	 question	 types	 (free	 and	 cued	 recall),	 predicting	 that	 longer	 gaps	 between	 study	
sessions	 and	 a	 longer	 retention	 interval	 would	 depend	 “more	 heavily	 on	 the	 degree	 of	 integration”	
(Rawson,	2012,	p.	873).	Analysis	showed	that	participants	with	longer	gaps	between	study	sessions	were	
likelier	to	recall	the	main	and	important	ideas	over	the	unimportant	ideas.	The	students	experiencing	a	
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longer	retention	 interval	performed	significantly	higher	on	the	cued	recall	questions	by	recalling	more	
ideas	after	the	delay.	
	
Thus,	the	benefits	of	revisiting	previously	studied	material	might	not	show	up	on	immediate	post-tests.	
A	 delayed	 post-test	 is	 likelier	 to	 detect	 the	 potential	 benefit	 of	 distributed	 study.	 This	 presents	 a	
potential	 challenge	 to	 the	 design	 of	 adaptive	 learning	 systems,	 unless	 retention	 is	 a	 priority	 of	 the	
designers.	
	
2.4 Revisiting What? 
	
While	we	cannot	always	detect	why	students	choose	to	revisit	previously	studied	material,	we	can	easily	
explore	what	 they	 revisit,	 and	 test	 revisiting	 as	 a	 diagnostic	 for	 retention	 of	 coherent	 understanding.	
WISE	 units	 include	 various	 curricular	 step	 types,	 such	 as	 text,	 static	 illustrations,	 and	 dynamic	
visualizations.	
	
Based	on	prior	research,	we	know	that	students	can	learn	about	abstract	or	invisible	phenomena	—	like	
heat	transfer	and	transformation	—	from	dynamic	visualizations	(e.g.,	Cook,	2006;	Marbach-Ad,	Rotbain,	
&	 Stavy,	 2008).	 While	 there	 is	 continued	 controversy	 about	 how	 and	 when	 static	 versus	 dynamic	
visualizations	support	learning	(Tversky,	Morrison,	&	Betrancourt,	2002),	there	is	substantial	support	for	
their	use	in	learning	(Höffler	&	Leutner,	2007),	particularly	when	student	interactions	with	visualizations	
are	scaffolded	(Hegarty,	2004;	Tversky	et	al.,	2002).	In	our	prior	research,	we	have	found	that	students	
do	 learn	 from	dynamic	 visualizations	 designed	 to	 support	 knowledge	 integration	 (Ryoo	&	 Linn,	 2010,	
2012;	 Svihla	 &	 Linn,	 2012a).	 This	 typically	 means	 that	 students	 are	 first	 asked	 to	 make	 predictions,	
interact	with	a	dynamic	visualization,	and	then	reflect	on	what	they	learned.	
	
When	 supporting	 students	 to	 learn	 about	 a	 complex	 phenomenon,	 we	 have	 also	 added	 static	
illustrations	 to	 help	 students	 connect	 their	 prior	 experiences	 to	 the	 phenomenon	 and	 notice	 salient	
features	when	they	interact	with	the	dynamic	visualizations.	For	instance,	in	the	Global	Climate	Change	
unit,	we	added	a	static	illustration	(Figure	3,	left)	prior	to	the	dynamic	visualization	(Figure	3,	right).	This	
was	added	based	on	analysis	of	video	data	and	log	file	data	from	initial	testing	of	the	learning	design.		
	
This	combination	supported	the	 initial	development	of	coherent	understanding	of	climate	change	and	
energy	 transformation	 as	 an	 important	mechanism	 for	 the	 greenhouse	 effect	 (Svihla	 &	 Linn,	 2012a);	
here	 we	 explore	 how	 students’	 spontaneous	 revisiting	 of	 these	 relates	 to	 retention	 of	 this	
understanding.	
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Figure	3.	On	left,	the	static	curriculum	step	in	which	students	see	a	simple	metaphor	for	energy	

transformation	as	an	advance	organizer.	On	the	right,	a	dynamic	visualization	step,	in	which	students	
first	see	a	screenshot	suggesting	various	experiments	and	then	can	test	out	their	own	ideas	with	the	

visualization.	
	
The	 static	 illustration	 contains	 information	about	energy	 transformation	 in	 the	greenhouse	effect	 and	
compares	 it	 to	 phase	 changes	 in	water.	 The	 dynamic	 visualization	 contains	 information	 about	 energy	
transformation	 in	 the	 greenhouse	 effect,	 and	 additionally	 allows	 students	 to	 relate	 this	 to	 global	
temperature.	 In	 contrast	 to	 the	 static	 illustration,	 the	 information	 is	 not	 presented	 directly;	 students	
must	 explore	 the	 visualization	 to	 uncover	 this	 information.	 Thus,	 the	 dynamic	 visualization	 contains	
more	 information	 than	 the	static	 illustration,	but	 the	 information	 is	available	only	 through	 interaction	
with	the	dynamic	visualization.	
	
3 RESEARCH PURPOSE 
	
We	investigated	students’	spontaneous	revisiting	of	prior	steps	as	a	form	of	self-distributed	learning.	We	
tested	various	types	of	 revisiting	of	earlier	steps	 in	the	unit	with	a	 large	sample	of	students	taught	by	
several	teachers.	We	also	examined	duration	of	instruction.	We	investigated	the	following	questions:	
	
1. How	does	duration	of	instruction	explain	variance	in	retention	of	integrated	knowledge?	
2. How	do	duration	of	 instruction	and	specific	ways	to	operationalize	revisiting	as	an	analytic	explain	

variance	in	retention	of	integrated	knowledge,	with	revisiting	defined	as	propensity	to:	
a)	revisit	prior	steps	in	general;	
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b)	revisit	specific	steps	—	a	static	illustration	or	a	dynamic	visualization;	
c)	distribute	study	in	general	by	revisiting	steps	across	days;	
d)	distribute	study	by	revisiting	specific	steps	—	a	static	illustration	or	a	dynamic	visualization	—	
across	days.	
	

We	 hypothesized	 that	 propensity	 to	 distribute	 study	 by	 revisiting	 specific	 steps	 would	 best	 predict	
retention.	We	 further	predicted	 that	 restudy	of	 the	more	complex	dynamic	visualization	would	better	
support	retention.	Operationalizing	revisiting	in	this	way	best	aligns	to	our	learning	design.	
	
4 METHODS 
	
4.1 Instructional Materials 
	
Students	 studied	 a	 previously	 tested	 WISE	 unit	 called	 Global	 Climate	 Change	 (GCC)	 (Svihla	 &	 Linn,	
2012a).	 This	 unit	 teaches	 students	 about	 the	 greenhouse	 effect	 and	 the	 role	 of	 energy	 transfer	 and	
energy	transformation	in	climate	change.	
	
4.2 Participants 
	
Participants	were	835	grade	6	students	(664	students	completed	all	measures)	taught	by	seven	different	
teachers	 at	 three	 culturally	 diverse	 middle	 schools.	 All	 teachers	 taught	 the	 unit	 in	 five	 to	 seven	
consecutive	class	periods.	
	
Data	were	 collected	during	 two	 consecutive	 school	 years.	 Each	 teacher	was	 assigned	 an	 ID	 (Table	 1).	
Three	 teachers	 provided	 data	 for	 both	 years.	 Three	 of	 the	 teachers	 taught	multiple	 class	 periods	 per	
day,	 resulting	 in	 larger	 sample	 sizes	 for	 those	 teachers.	We	define	an	 implementation	as	 including	all	
class	periods	taught	by	a	teacher	in	a	given	semester.	In	total,	ten	implementations	are	included	in	the	
study,	with	three	teachers	contributing	two	implementations.	Mean	total	time	spent	studying	the	unit	
ranged	from	133	to	301	minutes.	
	
4.3 Assessments 
	
We	 used	 Knowledge	 Integration	 assessments	 aligned	with	 the	 unit.	 The	 assessment	 items	 have	 been	
shown	to	have	good	psychometric	properties	and	to	be	valid	 indicators	of	knowledge	 integration	 (Liu,	
Lee,	Hofstetter,	&	 Linn,	 2008;	 Liu,	 Ryoo,	 Linn,	 Sato,	&	 Svihla,	 2015).	 Retention	was	measured	using	 a	
delayed	post-test	 (M=12.88,	SD=2.06)	administered	a	mean	of	23	days	 following	 instruction	 (Table	1).	
Teachers	gave	the	delayed	post-test	to	fit	their	particular	schedules,	resulting	in	retention	intervals	that	
varied	 from	4	 to	 40	 days.	 The	 delayed	 post-test	 included	 six	 Knowledge	 Integration	 items	 (maximum	
possible	score	of	21)	drawn	from	a	longer	assessment	that	additionally	covered	other	topics	as	part	of	a	
project	investigating	cumulative	learning	(Liu	et	al.,	2015;	Svihla	et	al.,	2010).	The	items	included	in	the	
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delayed	 post-test	 assessed	 students’	 understanding	 of	 energy	 transfer	 by	 radiation,	 energy	
transformation,	and	the	role	energy	transformation	plays	in	the	greenhouse	effect;	these	same	concepts	
are	taught	in	the	curriculum	steps	in	Figure	3.	The	delayed	post-test	scores	appear	relatively	low	in	part	
because	 energy	 transfer	 and	 transformation	were	 challenging	 items,	 intended	 to	 detect	 growth	 over	
multiple	years.	
	
Table	1.	Descriptive	statistics	for	each	implementation,	including	retention	interval,	delayed	post-test	

scores,	and	total	minutes	spent	on	the	unit	

Year	 Teacher	ID	
Retention	
interval	
(days)	

n	
Delayed	Post-test	

score	
Total	minutes	

M	 SD	 M	 SD	
2010	 0	 31	 79	 14.44	 2.64	 215.73	 24.67	
2010	 1	 17	 28	 15.00	 2.80	 229.69	 36.38	
2010	 2	 15	 60	 13.45	 2.59	 187.23	 48.07	
2010	 3	 23	 27	 13.89	 3.07	 184.19	 21.11	
2011	 0	 4	 93	 12.19	 1.66	 205.06	 45.66	
2011	 1	 12	 52	 13.02	 1.59	 300.75	 68.94	
2011	 2	 26	 91	 12.36	 1.42	 235.73	 59.19	
2011	 4	 24	 26	 12.31	 1.19	 222.47	 49.43	
2011	 5	 15	 26	 12.04	 1.08	 95.78	 17.90	
2011	 6	 40	 182	 12.36	 1.26	 132.62	 25.24	

 
5 ANALYSIS 
	
5.1 Data Coding 
	
Student	responses	were	saved	by	the	WISE4	system	and	scored	using	validated	Knowledge	Integration	
rubrics	 (Svihla	&	 Linn,	 2012a).	 Two	 raters	 coded	 a	 subset	 of	 items;	 any	 discrepancies	were	 discussed	
until	consensus	was	reached.	To	be	successful	on	Knowledge	Integration	items,	students	must	exhibit	a	
coherent,	connected,	normative	understanding	 (Table	2).	Note	that	because	the	 lowest	possible	score	
per	 question	 is	 1,	 tests	 containing	multiple	 questions	 have	 a	minimum	 score	 equal	 to	 the	 number	 of	
items	(as	opposed	to	0).	
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Table	2.	Knowledge	Integration	scores,	levels,	and	descriptions	
Knowledge	
Integration	

score	

Level	 Description	

1	 Irrelevant		 Does	not	answer	the	question	being	asked,	or	chose	not	to	
answer	

2	 Non-normative	 Contains	non-normative	ideas	or	links,	vague	ideas,	or	
scientifically	invalid	connections	between	ideas	

3	 Partial	link	 Unelaborated	connections	using	relevant	features	OR	
Scientifically	valid	connections	not	sufficient	to	solve	the	

problem.		
4	 Full	link	 One	scientifically	complete	and	valid	connection	
5	 Complex	link		 Two	or	more	scientifically	complete	and	valid	connections	

	
5.2 Log File Analysis 
	
The	WISE	system	logs	student	progress	through	units,	providing	timestamps	of	the	students’	activity	in	
sequence	 in	 an	 exportable	 Excel	 file	 (Figure	 4).	 All	 student	 dyads	 associated	 with	 a	 teacher’s	
implementation	 are	 exported	 into	 a	 single	 file.	 To	 reliably	 document	 student	 revisiting,	 we	 used	 an	
AppleScript	 (excel2csv.app)	 to	extract	 student	 logs	 into	 individual	 .csv	 files.	We	 then	used	MATLAB	 to	
extract	data	about	revisiting	patterns	and	timing.	This	process	resulted	 in	a	 .csv	 file	 for	each	teacher’s	
implementation.	
	

	
Figure	4.	Screenshot	of	an	Excel	workbook	containing	log	file	data	from	one	teacher’s	implementation	

of	the	Global	Climate	Change	unit.	
	
The	first	column	in	the	spreadsheet	provides	the	sequence	(Figure	4).	The	second	column	identifies	the	
number	and	title	of	the	step	the	dyad	visited.	The	third	and	fourth	columns	provide	information	about	
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the	 step	 type	 and	 prompts.	 The	 fifth,	 sixth,	 and	 seventh	 columns	 provide	 time	 and	 date	 information	
about	each	visit.	The	eighth	column	shows	student	work,	making	it	possible	for	researchers	to	identify	
when	students	made	changes	to	their	answers.	
	
Thus,	several	variables	are	easily	computed.	We	computed	the	total	time	(duration	of	study)	each	dyad	
spent	 on	 the	 unit.	 To	 explore	 revisiting,	 we	 computed	 several	 variables	 (Tables	 3	 and	 4).	 We	 first	
eliminated	visits	lasting	less	than	five	seconds	since	these	generally	resulted	from	students	clicking	the	
“Next”	 or	 “Back”	 buttons	 in	 rapid	 succession.	 Rapid	 clicking	 was	 also	 observed	 during	 classroom	
observations	and	 in	videos	of	 implementation	when	students	quickly	clicked	 through	steps	 to	 reach	a	
desired	step.	
	
Based	on	past	research	showing	that	students	differ	in	their	propensity	to	update	their	memories	(Bjork,	
1978),	we	computed	a	revisiting	disposition	variable,	defined	as	the	average	number	of	visits	made	to	
steps	across	 the	unit	 (Tables	3	and	4).	Thus,	 if	a	dyad	visited	every	step	 in	 the	unit	 twice,	 they	would	
receive	a	score	of	two.	
	
We	also	hypothesized	that	while	students	differ	in	propensity	to	update	their	memories,	they	could	also	
differ	in	what	they	chose	to	revisit.	We	viewed	the	specific	curriculum	steps	in	Figure	3	as	likely	targets	
of	restudy	based	on	classroom	observations.	These	two	steps	 in	particular	are	the	central	focus	of	the	
unit.	They	also	provide	an	interesting	contrast.	Previous	studies	of	dynamic	visualizations	embedded	in	
WISE	 units	 have	 provided	 evidence	 that	 students	 often	 learn	 more	 from	 them	 compared	 to	 static	
illustrations.	We	anticipated	differences	when	dyads	revisited	one	or	the	other	because	of	differences	in	
the	 type	of	 step	 (dynamic	 versus	 static)	 and	 the	 amount	of	 information	 in	 each	 step	 (both	 contained	
information	 about	 the	 role	 of	 energy	 transformation	 in	 the	 greenhouse	 effect,	 but	 only	 the	 dynamic	
visualization	 related	 that	 to	 changes	 in	 global	 temperature).	 We	 calculated	 variables	 for	 the	 total	
number	of	visits	to	each	of	these	steps.	
	
Based	on	past	research,	we	also	wanted	to	test	the	benefit	for	longer	lags	between	revisits.	For	instance,	
based	on	a	meta-analysis,	 longer	 intervals	between	study	sessions	better	support	more	complex	tasks	
(Donovan	&	Radosevich,	1999).	This	suggests	that	immediate	revisits	(e.g.,	those	occurring	on	the	same	
day)	to	recently	viewed	materials	may	not	lead	to	longer	retention	of	coherent	understanding.	Thus,	we	
computed	a	distributed	disposition	variable	based	on	the	number	of	days	each	dyad	visited	each	step.	
This	 was	 calculated	 as	 the	 average	 number	 of	 days	 students	 visited	 each	 step	 throughout	 the	 unit.	
Students	who	visited	each	step	on	one	and	only	one	day	would	have	a	score	of	one,	whereas	those	who	
visited	each	step	on	two	days	would	have	a	score	of	two.	
	
We	also	computed	distributed	visit	variables	for	the	same	specific	steps	—	the	dynamic	visualization	and	
the	static	illustration.	We	predicted	an	advantage	when	students	visited	these	steps	on	more	than	one	
day	because	the	visits	would	be	more	distributed	in	time.	
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Table	3.	Variables	computed	to	explore	revisiting	

Type	of	revisiting	 Calculated	as	 Justification	
Revisiting	 disposition:	
General	 disposition	 to	
revisit	

Calculated	 as	 average	 number	 of	
visits	 across	 all	 steps.	Both	 same-
day	and	across-day	visits	to	a	step	
counted.	

Students	 differ	 in	 their	 propensity	
to	 update	 their	 memories	 (Bjork,	
1978).		

Number	 of	 visits	 to	
static	illustration.	

Calculated	as	the	total	number	of	
visits	to	the	static	curriculum	step.	

Students	 vary	 in	 propensity	 to	
update	 their	 memories	 (Bjork,	
1978),	 but	 what	 they	 choose	 to	
revisit	 could	 correspond	 to	 what	
they	retain.	

Number	 of	 visits	 to	
dynamic	visualization.		

Calculated	as	the	total	number	of	
visits	to	the	dynamic	visualization.	

Distributing	 disposition:	
Disposition	 to	 revisit	
steps	across	days	

Calculated	 as	 average	 number	 of	
days	a	dyad	visited	each	step.		

Students	 can	 judge	 when	 it	 is	
advantageous	 to	 distribute	 their	
learning	 over	 time	 (Popham,	
2009).	

Number	 of	 days	 visited	
static	illustration	

Calculated	as	the	total	number	of	
days	 a	 dyad	 visited	 the	 static	
illustration.	

Students	 can	 judge	 when	 it	 is	
advantageous	 to	 distribute	 their	
learning	 over	 time	 (Popham,	
2009),	 but	 what	 they	 choose	 to	
revisit	 could	 correspond	 to	 what	
they	retain.	

Number	 of	 days	 visited	
dynamic	visualization	

Calculated	as	the	total	number	of	
days	 a	 dyad	 visited	 the	 dynamic	
visualization.	

	
Table	4.	Descriptive	statistics	for	each	type	of	revisiting	variable	

Year	

Te
ac
he

r	I
D	 Revisiting	

disposition	

Visits	to	
static	

illustration	

Visits	to	
dynamic	

visualization	

Distributing	
disposition	

Days	visited	
static	

illustration	

Days	visited	
dynamic	

visualization	
M	 SD	 M	 SD	 M	 SD	 M	 SD	 M	 SD	 M	 SD	

2010	 0	 1.97	 0.57	 1.31	 0.98	 3.73	 2.86	 1.18	 0.33	 1.18	 0.77	 1.94	 1.28	
2010	 1	 1.76	 0.24	 1.25	 0.51	 3.64	 1.98	 1.10	 0.11	 1.05	 0.23	 1.46	 0.5	
2010	 2	 1.8	 0.56	 1.32	 0.83	 3.08	 2.15	 1.11	 0.32	 1.11	 0.52	 1.61	 0.8	
2010	 3	 1.78	 0.4	 1.40	 0.62	 3.40	 2.77	 1.16	 0.11	 1.07	 0.25	 1.2	 0.41	
2011	 0	 2.15	 0.56	 1.21	 0.49	 3.04	 2.67	 1.00	 0.14	 1.06	 0.31	 1.32	 0.77	
2011	 1	 2.54	 0.59	 5.95	 2.67	 9.27	 4.15	 1.40	 0.22	 2.49	 0.74	 2.53	 0.79	
2011	 2	 1.56	 0.44	 1.60	 1.01	 2.88	 2.09	 0.89	 0.42	 1.25	 0.59	 1.69	 0.92	
2011	 4	 2.29	 0.74	 3.36	 2.23	 6.5	 4.25	 1.39	 0.38	 2	 0.86	 2.21	 0.96	
2011	 5	 1.56	 0.21	 3.90	 1.82	 5.76	 3.26	 0.97	 0.10	 2	 0.38	 2	 0	
2011	 6	 1.46	 0.3	 1.15	 0.66	 2.28	 1.86	 0.98	 0.15	 1.01	 0.31	 1.07	 0.39	



	

(2015).	 Revisiting	 for	 retention:	 An	 analytic	 for	 inquiry	 science	 learning.	 Journal	 of	 Learning	 Analytics,	 2(2),	 75–101.	
http://dx.doi.org/10.18608/jla.2015.22.7	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	

87	

 
5.3 Regression Modelling of Revisiting Practices 
	
We	 initially	 modelled	 delayed	 post-test	 scores	 using	 Hierarchical	 Linear	 Modelling	 (HLM),	 but	 the	
number	of	participants	was	too	low	due	to	missing	data.	Calculations	of	intra-class	correlation	indicated	
that	 less	 than	 5%	 of	 the	 variance	 in	 delayed	 scores	 was	 explained	 by	 clustering.	 Other	 research	 has	
suggested	 that	 in	 such	 cases,	 multi-level	 modelling	 is	 not	 warranted	 (Lee,	 2000).	 Based	 on	 these	
findings,	we	proceeded	with	ordinary	least	squares	regression	modelling.	
	
We	 know	 from	 prior	 work	 that	 students	 need	 sufficient	 time	 to	 develop	 coherent	 understanding	 of	
complex	phenomena	like	climate	change.	We	therefore	first	modelled	retention	using	time	spent	on	the	
unit.	We	tested	various	contextual	variables	(e.g.,	gender,	teacher,	school)	not	detailed	here.	We	found	
that	they	did	not	explain	significant	variance.	
We	 proceeded	 to	 add,	 then	 remove,	 the	 revisiting	 variables	 stepwise,	 resulting	 in	 four	 models	 that	
tested	revisiting:	
• Model	2:	Revisiting	disposition;	
• Model	3:	Revisiting	the	static	illustration	and	dynamic	visualization;	
• Model	4:	Distributing	disposition;	
• Model	5:	Distributed	revisiting	of	the	static	illustration	and	dynamic	visualization.	
Adding	all	variables	at	once	would	have	resulted	in	multicollinearity,	as	the	step-specific	variables	would	
not	have	explained	variability	not	already	explained	by	the	disposition	variables.	Collinearity	tolerances	
ranged	 from	 .56	 to	 .85,	 suggesting	 that	 although	 the	 number	 of	 total	 visits	 to	 the	 two	 specific	 steps	
(r=.59)	and	number	of	days	the	specific	steps	were	visited	(r=.57)	were	significantly	correlated	to	each	
other,	this	was	not	an	issue	in	the	stepwise	approach.	
	
6 RESULTS OF REGRESSION MODELLING 
	
A	 simple	 linear	 regression	 was	 calculated	 to	 predict	 delayed	 post-test	 scores	 based	 on	 duration	 of	
instruction	 (M=198	minutes,	SD=65	minutes).	The	delayed	post-test	score	had	a	mean	of	12.88	across	
classes	and	a	standard	deviation	of	2.06.	A	significant	regression	equation	was	found	(F(1,	662)=	12.99,	
p<.001)	(Model	1,	Table	5,	Figure	5).	Spending	more	time	on	the	unit	in	total	predicted	higher	scores	on	
the	delayed	post-test,	with	an	increase	in	the	delayed	post-test	score	of	.004	for	each	additional	minute	
spent.	This	was	statistically	significant	but	accounted	for	a	small	amount	of	variance	in	delayed	post-test	
scores,	r2	=	.02,	p<.05.		
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Figure	5.	Scatterplot	showing	the	relationship	between	total	time	spent	on	the	unit	and	scores	on	the	

delayed	post-test.	Trend	line	shows	r2	=	.19.	
	
In	Model	 2,	 a	multiple	 linear	 regression	was	 calculated	 to	 predict	 delayed	 post-test	 scores	 based	 on	
duration	 of	 instruction	 and	 revisiting	 disposition	 (general	 propensity	 to	 revisit	 steps,	 both	 across	 and	
within	 days,	M=1.81,	 SD=0.57).	 A	 significant	 regression	 equation	was	 found	 (F(2,	 661)=	 7.82,	p<.001)	
(Model	2,	Table	5).	Spending	more	time	on	the	unit	in	total	predicted	higher	scores	on	the	delayed	post-
test,	with	an	increase	in	the	delayed	post-test	score	as	before.	Propensity	to	revisit	was	not	a	significant	
predictor.	Model	2	did	not	explain	significantly	more	variance	in	delayed	post-test	scores	than	Model	1,	
r2	=	.022,	p>.05.	
	
In	Model	 3,	 a	multiple	 linear	 regression	was	 calculated	 to	 predict	 delayed	 post-test	 scores	 based	 on	
duration	 of	 instruction	 and	 propensity	 to	 revisit	 specific	 steps	 (static	 illustration:	M=1.82,	 SD=1.80;	
dynamic	visualization:	M=3.59,	SD=3.16),	both	across	and	within	days.	A	significant	regression	equation	
was	 found	 (F(3,	 660)=	 5.89,	 p<.001)	 (Model	 3,	 Table	 5).	 Spending	 more	 time	 on	 the	 unit	 in	 total	
predicted	 higher	 scores	 on	 the	 delayed	 post-test,	 with	 an	 increase	 in	 the	 delayed	 post-test	 score	 as	
before.	Each	additional	visit	to	the	static	illustration	predicted	a	decrease	in	the	delayed	post-test	score	
of	0.119.	Additional	visits	to	the	dynamic	visualization	were	not	a	significant	predictor.	Model	3	did	not	
explain	significantly	more	variance	in	delayed	post-test	scores	than	Model	1,	r2	=	.026,	p>.05.	
	
In	Model	4,	a	multiple	linear	regression	was	calculated	to	predict	delayed	post-test	scores	based	on	the	
duration	 of	 instruction	 and	 distributing	 disposition	 (general	 propensity	 to	 revisit	 steps	 across	 days,	
M=1.13,	SD=0.26).	A	significant	regression	equation	was	found	(F(2,	661)=	7.34,	p<.001)	(Model	4,	Table	
5).	 Spending	more	 time	on	 the	unit	 in	 total	predicted	higher	 scores	on	 the	delayed	post-test,	with	an	
increase	in	the	delayed	post-test	score	as	before.	Propensity	to	distribute	study	by	revisiting	steps	across	
days	was	not	a	significant	predictor.	Model	4	did	not	explain	significantly	more	variance	in	delayed	post-
test	scores	than	Model	1,	r2	=	.022,	p>.05.	
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In	Model	 5,	 a	multiple	 linear	 regression	was	 calculated	 to	 predict	 delayed	 post-test	 scores	 based	 on	
duration	of	 instruction	and	propensity	to	distribute	study	by	revisiting	specific	steps	(static	 illustration:	
M=1.27,	SD=0.66;	dynamic	visualization:	M=1.54,	SD=0.86)	across	days.	A	significant	regression	equation	
was	 found	 (F(3,	 660)=	 10.59,	 p<.001)	 (Model	 5,	 Table	 5).	 Spending	 more	 time	 on	 the	 unit	 in	 total	
predicted	 higher	 scores	 on	 the	 delayed	 post-test,	 with	 an	 increase	 in	 the	 delayed	 post-test	 score	 as	
before.	Each	additional	visit	to	the	static	curriculum	step	predicted	a	decrease	in	the	delayed	post-test	
score	of	0.534.	Each	additional	visit	to	the	dynamic	curriculum	step	predicted	an	increase	in	the	delayed	
post-test	score	of	0.430.	Model	5	explained	significantly	more	variance	 in	the	delayed	post-test	scores	
than	Model	1,	r2	=	.046,	p<.05.	
	

Table	5.	Models	of	scores	on	the	delayed	post-test	

Unstandardized	Coefficients	
Standardized	
Coefficients	

	

	 B	 Std.	Error	 β	 t	
Model	1:	Delayed	post-test	scores	as	a	function	of	total	time	spent	on	the	unit	

Intercept	 12.084	 0.238	 	 50.67**	
Total	minutes	for	unit	 0.004	 0.001	 .139	 3.60**	

Model	2:	Delayed	post-test	scores	as	a	function	of	total	time	spent	on	the	unit	and	revisiting	
disposition	

Intercept	 12.224	 0.257	 	 47.61**	
Total	minutes	for	unit	 0.004	 0.001	 .128	 3.28**	
Average	number	of	times	
each	dyad	visited	steps	
across	the	unit	

-0.301	 0.186	 -.083	 -1.62	

Model	3:	Delayed	post-test	scores	as	a	function	of	total	time	spent	on	the	unit	and	revisiting	specific	
steps	

Intercept	 12.07	 0.238	 	 50.69**	
Total	minutes	for	unit	 0.005	 0.001	 .156	 3.69**	
Total	number	of	visits	to	
static	curriculum	step	

-0.119	 0.055	 -.104	 -2.15*	

Total	number	of	visits	to	
dynamic	visualization	step	

0.035	 0.032	 .054	 1.11	

Model	4:	Delayed	post-test	scores	as	a	function	of	total	time	spent	on	the	unit	and	distributing	
disposition	

Intercept	 12.420	 0.352	 	 35.24**	
Total	minutes	for	unit	 0.005	 0.001	 .174	 3.69**	
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Average	number	of	days	
each	dyad	visited	each	
step	

-0.479	 0.371	 -.061	 -1.29	

Model	5:	Delayed	post-test	scores	as	a	function	of	total	time	spent	on	the	unit	and	distributing	visits	
to	specific	steps	

Intercept	 12.151	 0.251	 	 48.50**	
Total	minutes	for	unit	 0.004	 0.001	 .130	 3.15**	
Number	of	days	visited	
static	curriculum	step	

-0.534	 0.145	 -.172	 -3.67**	

Number	of	days	visited	
dynamic	visualization	step	

0.430	 0.113	 .180	 3.80**	

Model	1	r2	=	.019,	r2	change**;	Model	2	r2	=	.023,	r2	change	NS;	Model	3	(compared	to	Model	1)	r2	=	
.026,	r2	change	NS;	Model	4	(compared	to	Model	1)	r2	=	.022,	r2	change	NS;	Model	5	r2	=	.046,	r2	
change**;	*	Significant	at	p<.05;	**	Significant	at	p<.01	
	
7 DISCUSSION 
	
Our	 results	are	anchored	 to	 the	 realities	of	doing	 research	 in	naturalistic	 classrooms.	Our	 findings	are	
correlational	 in	 nature,	 and	 reflect	 the	 messiness	 and	 complexities	 of	 doing	 research	 for	 and	 with	
complex	science	learning	in	public	school	settings.	In	such	settings,	teachers	provide	varied	instructional	
supports	outside	the	learning	design,	with	some	teachers	allowing	the	learning	design	to	do	most	of	the	
work,	 others	 creating	 worksheets	 based	 on	 the	 learning	 design,	 and	 others	 creating	 entire	 labs	 to	
complement	 what	 students	 are	 learning.	 Teachers	 implement	 the	 learning	 design	 and	 associated	
measures	according	to	schedules	that	they	themselves	may	not	have	much	control	over	as	other	testing	
and	 school	 events	 intercede.	 These	 challenges	 prevent	 strict	 experimental	 control,	 particularly	 for	
longer	 timescale	 interventions,	 yet	 it	 is	 important	 to	 study	 such	 interventions	 under	 real-world	
conditions.	
	
Using	automatically	collected	log	data	still	provides	an	excellent	opportunity	to	pose	theoretically	driven	
research	questions	about	learning,	even	under	these	conditions.	However,	results	from	such	approaches	
are	 correlational	 in	 nature,	 and	 cannot	 rule	 out	 the	 possibility	 that	 some	 undetected	 variable	might	
cause	both	the	behaviour	and	the	outcome.	
	
We	 took	 advantage	 of	 the	 log	 file	 data	 to	 test	 questions	 related	 to	 self-directed	 learning	behaviours,	
namely,	the	amount	of	time	a	student	spent	studying	the	unit	overall	and	various	types	of	revisiting.	In	
our	study,	the	learning	gains	were	modest,	overall.	Results	across	models	show	an	advantage	for	longer	
time	spent	learning	the	unit,	consistent	with	greater	opportunity	to	learn	the	material.	In	our	analysis,	
we	found	a	small	effect	 for	duration	of	 instruction.	This	 is	consistent	with	the	value	of	spending	more	
time	on	complex,	inquiry	activities	documented	in	earlier	studies	of	implementation	of	WISE	units	(Lee,	
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Linn,	 Varma,	 &	 Liu,	 2010).	 However,	 this	 finding	 is	 correlational.	 It	may	 be	 that	 students	who	 spend	
longer	 do	 so	 because	 they	 know	how	 to	make	 the	 extra	 time	benefit	 their	 learning.	 Simply	 requiring	
students	 to	 spend	 longer	might	not	 result	 in	 increased	gains,	as	 students	who	have	 the	propensity	 to	
spend	 less	 time,	might	 spend	 time	 reviewing	material	 shallowly	or	without	purpose,	 resulting	 in	 little	
benefit	for	learning.	Thus,	understanding	more	about	ways	students	direct	their	restudy	behaviour	could	
be	useful	in	supporting	learning	and	guiding	learning	designs.	
	
Through	a	sequence	of	models,	we	tested	various	ways	to	operationalize	revisiting	as	a	metric:	first,	as	a	
disposition	to	revisit	in	general;	second,	as	a	propensity	to	revisit	specific	material;	third,	as	a	disposition	
to	 distribute	 study	 over	 time;	 and	 fourth,	 as	 a	 propensity	 to	 distribute	 study	 of	 material	 over	 time.	
Revisiting	previously	studied	materials	is	a	compelling	analytic	because	it	is	both	theoretically	grounded	
and	relatively	easy	to	detect.	Prior	research	has	shown	that	revisiting	previously	studied	material	—	such	
as	 rereading	a	post	 in	an	online	 forum	—	can	benefit	 learners	 (Wise,	Hausknecht,	&	Zhao,	2014),	and	
that	 repeated	 retrieval	 supports	 retention	 (Karpicke	 &	 Roediger,	 2007).	 Likewise,	 repeated	 practice	
across	days	and	over	 time	 supports	 learning	 (Andergassen	et	al.,	 2014;	Mödritscher	et	al.,	 2013).	Our	
findings	 tell	 a	 more	 complicated	 story,	 suggesting	 that	 revisiting	 may	 not	 be	 as	 straightforward	 an	
analytic	as	one	might	hope.	Past	research	has	shown	that	students	differ	in	their	propensity	to	update	
their	memories	 (Bjork,	1978),	 and	 can	 judge	when	 it	 is	 advantageous	 to	distribute	 their	 learning	over	
time	 (Popham,	2009).	Our	 sequence	of	models	 suggests	 that	having	a	disposition	 to	 revisit	previously	
studied	 material	 —	 whether	 with	 a	 lag	 between	 sessions	 or	 not	 —	 might	 not	 explain	 variance	 in	
retention.	
	
By	 testing	 a	 sequence	of	models	 that	 operationalized	 revisiting	 in	 different	 general	 and	 specific	ways	
aligned	 to	 research	on	 the	 value	of	distributed	 learning	and	a	 learning	design,	we	were	able	 to	 show	
that,	 as	 predicted,	 only	 distributed	 restudy	 of	 specific	 material	 supported	 retention.	 We	 found	 that	
while	 revisiting	 a	 dynamic	 visualization	 supported	 retention,	 revisiting	 a	 static	 illustration	 did	 not.	 In	
general,	 students	 visited	 the	 dynamic	 visualization	 with	 greater	 frequency	 and	 variability	 than	 they	
visited	 the	 static	 illustration,	 both	 in	 general	 and	 in	 a	 distributed	 (across	 days)	manner.	Overall,	 they	
visited	 the	 dynamic	 visualization	 nearly	 twice	 as	 often,	 suggesting	 a	 general	 perception	 that	 learning	
from	the	dynamic	visualization	required	more	visits.	Alternatively,	this	could	mean	that	students	simply	
enjoyed	playing	with	the	dynamic	visualization,	and	returned	to	it	because	of	that.	Students	also	spent	
more	 time	per	 visit	 on	 the	dynamic	 visualization	 (M=134	 seconds,	SD=119)	 than	 the	 static	 illustration	
(M=42	seconds,	SD=33).	These	findings	are	not	surprising	as	the	dynamic	visualization	takes	time	to	use	
and	 interact	 with	 in	 order	 to	 access	 the	 information	 it	 contains.	 Further,	 the	 dynamic	 visualization	
contained	 additional	 information,	 relating	 energy	 transformation	 to	 global	 temperature,	 a	 detail	 not	
present	in	the	static	illustration.	
	
This	detail	is	important	as	it	highlights	that	this	comparison	is	not	intended	to	support	inferences	about	
the	relative	value	of	dynamic	versus	static	visualizations	in	general.	In	fact,	we	stand	by	the	decision	to	
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include	the	static	illustration,	as	our	previous	research	has	demonstrated	that	it	supported	students	to	
connect	their	prior	experiences	and	ideas	and	supported	initial	learning	of	a	relatively	abstract	concept	
(Svihla	 &	 Linn,	 2012a).	 In	 our	 sample,	 distributed	 restudy	 of	 the	 dynamic	 visualization	 positively	
benefited	retention,	whereas	more	frequent	revisiting,	in	general	or	across	days,	of	the	static	illustration	
predicted	lower	retention.	We	discuss	this	finding	grounded	in	the	Knowledge	Integration	framework.		
Revisiting	 the	 dynamic	 visualization	 is	 likely	 to	 elicit	 Knowledge	 Integration	 activities,	 such	 as	
distinguishing	among	alternative	 ideas	and	 linking	 ideas.	This	 is	not	 simply	because	 it	 is	a	dynamic,	as	
opposed	to	static,	visualization,	but	also	because	it	contains	more	complex	information	that	cannot	be	
accessed	without	interacting	with	the	visualization.	Students	had	previously	made	observations	with	the	
dynamic	 visualization,	 using	 it	 to	 test	 their	 predictions	 and	 initial	 ideas.	When	 revisiting,	 the	dynamic	
visualization	 could	 cue	 memories	 of	 these,	 or	 students	 could	 conduct	 further	 tests,	 leading	 to	 new	
observations	or	new	insights.	These	afford	students	the	opportunity	to	evaluate	their	understanding	and	
make	 new	 links	 between	 ideas	 across	 activities.	 The	 significant	 advantage	 of	 revisiting	 the	 dynamic	
visualization	 is	 consistent	with	 evidence	 for	 their	 value	when	 they	 are	 implemented	with	 guidance	 in	
online	units	(McElhaney	&	Linn,	2011;	Ryoo	&	Linn,	2012;	Svihla	&	Linn,	2012a),	and	also	consistent	with	
a	differentiation	between	simple	recalling	and	more	effortful	relearning	(Rawson	&	Dunlosky,	2011).	
	
However,	it	is	important	to	note	that	pre-existing	differences,	such	as	in	students’	prior	knowledge,	their	
understanding	of	dynamic	visualizations,	as	well	as	other	factors	may	have	 led	some	students	and	not	
others	 to	 distribute	 their	 revisits	 across	 the	 different	 types	 of	 resources.	 Students	who	 did	 not	 really	
develop	 understanding	 from	 their	 initial	 work	 with	 the	 interactive	 simulation	 might	 not	 have	 been	
predisposed	to	revisit	it,	relying	instead	on	the	easier	to	understand	static	visualization.	Future	research	
should	 investigate	 such	 variables	 under	 varied	 conditions	 to	 determine	 whether	 forced	 revisiting	
produces	benefits	for	those	who	lack	the	propensity	to	revisit.	
	
The	 significant	 disadvantage	 for	 revisiting	 the	 static	 illustration	 is	 consistent	with	 evidence	 that	when	
students	reread	text,	often	adding	multi-coloured	underlining,	they	do	not	succeed	as	well	as	their	peers	
who	 test	 themselves	on	 the	material	or	 seek	 links	among	 ideas	 in	 the	 instructional	materials	 (Bjork	&	
Bjork,	2009).	These	results	resonate	with	other	studies	showing	that	durable,	integrated	understanding	
requires	active	 integration	of	diverse	 ideas	 rather	 than	 recall	of	details	 (Bransford,	Brown,	&	Cocking,	
2000;	 Linn	 &	 Eylon,	 2011)	 and	 benefits	 from	 self-monitoring	 ability	 (White	 &	 Frederiksen,	 1998).	 In	
addition,	these	results	are	consistent	with	research	on	spontaneous	generation	of	explanations	during	
learning.	 Based	on	our	 findings,	more	 research	 is	 needed	 to	 understand	how	 to	design	 supports	 that	
encourage	deliberate	revisiting	when	learners	are	permitted	to	distribute	their	own	practice.	
	
Findings	 also	 suggest	 that	 students	 who	 choose	 to	 revisit	 deceptively	 clear	 or	 less	 demanding	
information,	such	as	the	metaphor	for	energy	transformation	rather	than	more	complex	and	difficult	to	
interpret	ideas	in	dynamic	visualizations,	do	not	monitor	their	own	learning	effectively.	While	we	believe	
that	the	metaphor	supported	students	to	develop	an	initial	understanding	of	energy	transformation,	we	
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also	think	that	an	overreliance	on	this	simple	explanation	did	not	support	students	to	develop	coherent,	
integrated,	durable	understandings	of	climate	change.	Further	research	is	needed	to	understand	how	to	
support	students	to	focus	their	energies	on	restudying	materials	that	create	desirable	difficulties;	such	
activities	may	make	learning	more	effortful,	but	they	also	make	it	more	durable.	
	
Ultimately,	the	variables	in	Model	5	significantly	predicted	delayed	post-test	scores,	but	explained	little	
variation	in	them.	A	number	of	other	variables	—	e.g.,	pre-	and	post-assessments,	student	interest	levels	
in	the	topic,	other	related	instruction	not	documented	by	our	system,	differences	in	implementation	—	
that	 we	 lacked	measures	 for	—	might	 have	 better	 predicted	 delayed	 post-test	 scores.	 However,	 the	
objective	of	our	modelling	was	not	 to	account	 for	maximum	variance	 in	delayed	post-test	 scores,	but	
rather	to	explore	nuanced	models	related	to	our	research	questions.	We	argue	that	although	distributed	
revisiting	of	specific	steps	explained	 little	variance,	 it	 is	still	an	 interesting	metric.	The	amount	of	 time	
accounted	for	by	students’	revisits	to	these	two	steps	is	small	—	a	matter	of	only	one	or	two	minutes.	
That	those	minutes	can	explain	any	variability	in	scores	on	a	test	taken	days	to	weeks	later	is	surprising	
yet	theoretically	backed	by	an	extensive	research	base	on	distributed	learning.	
	
7.1 Limitations 
	
This	research	was	conducted	in	classrooms	in	only	three	schools	and	used	a	single	inquiry	unit,	limiting	
generalizability.	We	 focused	on	Knowledge	 Integration	and	 the	 findings	might	not	generalize	 to	other	
outcome	measures	or	learning	designs.	Our	design	was	comparative,	lacking	an	experimental	control;	as	
such,	our	findings	are	tentative.	
	
The	 relationships	 we	 found	 between	 revisiting	 and	 retention	 are	 correlational	 and	 could	 have	 been	
caused	by	 some	other	 unmeasured	 variable;	 for	 instance,	 there	may	be	 some	 systematic	 reason	 that	
lead	certain	students	to	revisit	dynamic	visualizations,	and	lead	others	to	revisit	static	 illustrations.	For	
instance,	 teachers	 might	 have	 encouraged	 students	 they	 viewed	 as	 smarter	 to	 revisit	 the	 dynamic	
visualizations,	and	encouraged	others	to	revisit	the	static	 illustrations.	 It	 is	also	possible	that,	 like	time	
on	task,	more	adept	students	were	better	able	to	judge	that	revisiting	the	dynamic	visualization	would	
be	helpful	to	their	learning.	Simply	forcing	students	to	revisit	complex	material	does	not	mean	they	will	
know	 what	 to	 do	 with	 it.	 Future	 studies	 could	 investigate	 this	 through	 randomized,	 systematic	
comparisons,	 forcing	 some	 students	 to	 revisit	 material,	 and	 allowing	 others	 to	 direct	 their	 own	
revisiting.	This	would	clarify	whether	 the	value	of	 revisiting	 is	 in	 the	revisit	 itself,	or	 in	 the	decision	to	
revisit.	 Similarly,	 it	 would	 be	 helpful	 to	 better	 understand,	 through	 prompted	 recall	 or	 think-aloud	
protocol,	more	 about	 how	 students	make	 decisions	 to	 revisit	 specific	materials.	 Alternatively,	 simple	
questions	might	 be	posed	when	 a	 revisit	 to	 a	 particular	 step	 is	 detected,	 allowing	 students	 to	 reflect	
both	on	why	they	chose	to	revisit	and	whether	they	found	it	beneficial	to	do	so.	This	could	lead	to	new	
metrics	 that	 might	 differentiate	 between	 reasons	 for	 revisiting.	 This	 would	 provide	 guidance	 for	 the	
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creation	 of	 learning	 designs	 that	 aim	 to	 encourage	 students	 to	 make	 the	 decision	 to	 revisit	 specific	
material,	rather	than	forcing	them	down	a	particular	path.	
	
We	defined	revisiting	based	on	activities	detected	in	log	files.	Students	could	engage	in	other	forms	of	
revisiting	that	our	methods	do	not	document.	For	instance,	teachers	in	some	classes	may	have	retaught	
information,	or	provided	study	sheets	and	additional	assessments	covering	related	content.		
Although	we	found	variables	that	could	significantly	predict	 the	variability	of	delayed	post-test	scores,	
other	 explanations	 should	 be	 entertained.	 For	 instance,	 the	 finding	 that	 spending	 longer	 on	 the	 unit	
predicted	higher	scores	could	be	a	reflection	of	some	other	unmeasured	variable,	such	as	differences	in	
student	 persistence,	 or	 in	 teachers’	 expectations	 of	 individual	 students.	 Thus,	 although	 this	 finding	
mirrors	previous	research,	it	should	not	be	viewed	as	a	prescriptive	that	more	time	is	necessarily	better.	
Likewise,	 there	 may	 be	 other	 explanations	 for	 why	 students	 revisit	 a	 particular	 step;	 they	 may	 be	
prompted	 by	 a	 teacher	 based	 on	 a	 conversation	 not	 shared	 across	 the	 class,	 meaning	 that	 the	
conversation	itself	may	have	produced	the	benefit,	rather	than	the	opportunity	to	restudy.	
	
7.2 Implications 
	
Combining	 learning	 analytics	 with	 learning	 design	 has	 previously	 helped	 guide	 the	 analysis	 of	 and	
refinement	 of	 learning	 designs	 in	 learning	 management	 systems	 (Wise,	 2014;	 Wise,	 Saghafian,	 &	
Padmanabhan,	2012).	This	combination	allows	researchers	to	plan	and	test	 learning	designs	guided	by	
theories	of	learning	(Lockyer	et	al.,	2013;	Wise,	2014).	
	
Our	sequence	of	models	focused	on	retention,	as	opposed	to	 initial	 learning,	and	this	has	 implications	
for	learning	designers	who	wish	to	incorporate	revisiting	as	a	learning	analytic.	First,	based	on	research	
on	distributed	learning,	it	is	likely	that	the	benefit	of	revisiting	may	not	be	visible	on	an	immediate	post-
test	 (Rohrer	 &	 Taylor,	 2006).	 This	 means	 that	 detecting	 benefits	 on	 retention	 requires	 longer-term	
investments	in	the	study	sites.	This	can	present	challenges,	especially	for	researchers	working	in	schools	
already	 beleaguered	 by	 the	 amount	 of	 testing.	 Such	 settings	 may	 prevent	 researchers	 from	
implementing	a	delayed	post-test,	and	therefore	would	present	a	barrier	to	furthering	this	work.	
	
We	found	that	revisiting	is	a	promising	yet	complex	learning	analytic	for	predicting	retention	of	coherent	
understanding	of	 complex	 scientific	 phenomena.	 Its	 value	 as	 an	 analytic	was	 increased	by	 theoretical	
guidance	 for	what	 is	 revisited.	While	 revisiting	as	 a	broad,	 generic	metric	did	not	predict	 retention,	 a	
more	nuanced	approach	to	revisiting	did.	This	metric	aligns	with	the	Knowledge	Integration	framework,	
in	 that	 revisiting	 dynamic	 visualizations	 better	 supports	 the	 kind	 of	 effortful	 relearning	 needed	 for	
coherent	understanding	and	retention	of	complex	scientific	phenomena.	
	
The	greater	variability	in	visits	to	the	dynamic	visualization,	compared	to	the	static	illustration,	suggests	
implications	 for	 instructors	 and	 for	 learning	 designers	 working	 with	 analytics.	 Not	 all	 students	
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recognized	 the	 need	 to	 restudy	 the	 complex	 information	 in	 the	 dynamic	 visualization.	 Although	
tentative,	 our	 findings	 suggest	 that	 there	 may	 be	 a	 benefit	 to	 prompting	 students	 to	 restudy	 such	
material,	either	by	the	instructor	or	by	the	learning	management	system.	Further	research	is	needed	to	
contrast	the	relative	benefits	from	spontaneous	and	prompted	restudy,	however,	as	prompted	restudy	
may	not	have	the	same	effect.	
	
Revisiting	is	a	valuable	and	relatively	easy	to	detect	analytic	for	retention	that	could	be	applied	to	other	
contexts;	however,	it	should	be	applied	in	a	nuanced	manner,	informed	by	the	theory	of	learning	guiding	
the	learning	design.	
	
The	 finding	 that	 generic	 revisiting	 —	 even	 distributed	 across	 days	 —	 did	 not	 significantly	 predict	
retention	suggests	two	implications	for	learning	designers	using	learning	analytics.	The	first	is	promising,	
in	that	 it	suggests	that	a	general	disposition	to	revisit,	something	 learning	designers	have	 little	control	
over,	might	not	be	that	important	as	a	concern.	However,	without	an	additional	measure	of	revisiting	as	
a	 disposition,	 this	 should	 be	 treated	 as	 tentative	 and	 explored	 further	 in	 other	 settings.	 The	 second	
implication	 is	 that	 a	nuanced	design	and	definition	of	 revisiting	 is	 likely	needed	and	 likely	 contextual.	
Generic	restudy	of	all	material	—	a	common	instructional	approach	we	observed	in	classrooms	—	may	
not	be	as	beneficial	for	retention	as	one	would	hope.	Yet,	this	suggests	that	there	is	much	more	work	to	
be	done	to	understand	how	to	apply	revisiting	as	an	analytic	in	specific	learning	designs,	and	this	study	
contributes	and	contrasts	a	range	of	ways	to	do	so.	
	
Given	 the	 relatively	 brief	 time	 required	 to	 prompt	 and	 carry	 out	 distributed	 restudy,	 either	 as	 an	
instructor	or	as	a	learning	designer,	our	findings	suggest	it	may	be	a	worthwhile	investment.	However,	
one	of	the	lessons	from	our	sequence	of	models	is	that	not	all	revisiting	is	equally	capable	of	predicting	
retention.	Understanding	how	to	 incorporate	findings	from	the	research	on	distributed	 learning	 into	a	
specific	 learning	design,	and	further	how	to	use	revisiting	as	an	analytic	appears	to	require	a	nuanced	
understanding	 of	 both	 the	 theory	 and	 the	 learning	 design.	 Based	 on	 our	 findings,	 we	 encourage	
instructors	 and	 learning	designers	 to	 focus	 the	efforts	of	 distributed	 restudy	on	 the	most	 central	 and	
complex	material	in	their	learning	designs.	
	
The	 potential	 of	 revisiting	 as	 an	 analytic,	 at	 least	 as	 we	 have	 conceptualized	 and	 studied	 it,	 is	 most	
promising	for	learning	theories	that	address	long-term	and	longitudinal	approaches	to	learning.	We	see	
potential	 in	 using	 such	 analytics	 to	 guide	 the	 learning	 designs	 that,	 for	 instance,	 support	 learning	
progressions	(Duncan	&	Hmelo-Silver,	2009;	Gunckel,	Mohan,	Covitt,	&	Anderson,	2012;	Shin	&	Stevens,	
2012)	and	curricular	standards	based	(at	least	in	part)	on	them	(e.g.,	NGSS	Lead	States,	2013;		National	
Governors	Association	Center	for	Best	Practices,	&	Council	of	Chief	State	School	Officers,	2010).	In	such	
contexts,	 revisiting	 as	 an	 analytic	 could	 help	 refine	 learning	 theory	 and	 learning	 designs	 by	 helping	
researchers	maintain	focus	on	both	initial	learning	supports	and	longer-term	retention.	
	



	

(2015).	 Revisiting	 for	 retention:	 An	 analytic	 for	 inquiry	 science	 learning.	 Journal	 of	 Learning	 Analytics,	 2(2),	 75–101.	
http://dx.doi.org/10.18608/jla.2015.22.7	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	

96	

Adding	analytic	 tools	 to	 learning	designs	 like	WISE	 could	also	help	 teachers	pose,	 then	monitor,	 long-
term	retention	questions.	Many	of	our	teachers	were	interested	in	posing	their	own	questions	about	the	
impact	their	instruction	had	when	using	WISE.	They	were	curious,	for	instance,	if	a	whole-class	demo	of	
an	interactive	visualization,	after	students	had	encountered	it	in	pairs,	could	improve	student	retention.	
As	 many	 of	 them	 taught	 multiple	 sections,	 they	 sometimes	 ran	 informal	 comparisons,	 trying	 one	
approach	with	one	 section	 and	 another	with	 another	 section.	 For	 instance,	 one	 teacher	 talked	 about	
using	 a	 simple	 starter	 prompt	 with	 one	 section,	 and	 revisiting	 a	 specific	 question	 from	 the	 learning	
design	with	another	 section.	 Integrated	analytics	 tools	 could	capitalize	on	 this	 interest	and	help	 them	
structure	meaningful	investigations,	including	providing	guidance	to	look	beyond	short-term	gains.	Such	
a	 suite	 of	 tools	 could	 include	 options	 to	 help	 teachers	 select	 central	 concepts	 they	 planned	 to	 guide	
students	to	revisit	as	well	as	those	they	observed	students	spontaneously	revisiting,	a	set	of	prompts	to	
encourage	teachers	to	record	notes	about	their	instruction	 in	room	as	a	way	to	gather	information	not	
automatically	 recorded,	 and	 automatically	 computed	 scores	 for	 revisiting.	 Such	 tools	 could	 elevate	
teaching	 practice	 by	 supporting	 teachers	 to	 pursue	 more	 easily	 what	 might	 otherwise	 be	 fleeting	
curiosities.	
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